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ABSTRACT

The Low Reynolds number version of the Stress-co model and

the two equation k-co model of Wilcox were used for the

calculation of turbulent heat transfer in a 180 degree turn
simulating an internal coolant passage. The Stress-co model was

chosen for its robustness. The turbulent thermal fluxes were

calculated by modifying and using the Generalized Gradient

Diffusion Hypothesis. The results showed that using this
Reynolds Stress model allowed better prediction of heat transfer

compared to the k-co two equation model. This improvement
however required a finer grid and commensurately more CPU
time.

INTRODUCTION

Our computational turbine heat transfer group has long been

interested in developing the necessary tools to compute the

external (blade surface) and internal (cooling passage) heat
transfer. We have adopted the k-co model of Wilcox [1] for its
robustness and the absence of distance to the wall in its

formulation. It was therefore natural for us to choose the

Reynolds Stress model (RSM) based on the co equation of Wilcox

[1] for our first venture into this type of modeling.

We have in the past presented the solution to the problem of

flow and heat transfer in a 180 degree channel[2] as predicted

using the k-co model. The geometry and experimental

measurements chosen come out of the work of Arts et al. [3]. In
this work we will explore the use of the Stress-co model and

contrast the solutions using the two models.

The RSMs are good candidates for this effort due to the

exactness of their production terms and their ability to better

represent the flow history among other advantages.The exactness

of the production terms among other advantages has the potential
to better simulate the stagnation flow, reattachment and curvature

effects. Advances in Reynolds Stress modeling are continuously

being made. Much of the effort has been placed in the modeling
of the pressure-strain correlation in these models which are of

significant magnitude and are responsible for the redistribution

between different components of the Reynolds Stress tensor. To

make the correlations valid near walls many authors use the so

called reflection terms which in most instances require the unit

wall normals to the wall. These quantities are not always clearly
definable away from walls and are thus not desirable. Some

workers instead have tried to use various invariances of the

anisotropy of Reynolds Stress matrix for this purpose [4]. It is

not the intent of this paper to provide a comprehensive summary
of RSMs and the interested reader may refer to [5] which is a

recent review paper on this subject. More recently the method of
elliptic relaxation which solves an additional set of six

differential equations to modify the redistribution tensor in the

vicinity of the walls has been gaining momentum[6]. The scheme

has been applied to some two dimensional or axisymmetric cases

[6-9], but has not yet been proven for three-dimensional complex

problems. Due to the inclusion of six additional equations the

computational cost is presumably much higher than the simpler
alternative.
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Therehavebeenattemptsmadeto solvetheheattransfer
problemin channelsusingRSMs.Forexample,Iacovidesand
Raisee[10],have performedinternal cooling passage
calculationswithaReynoldsStressModel.Iacovides,Launder
andLi[4] alsoappliedtheirRSMmodelto flowandheat
transferinaUbend.RecentlyChenetal.[11,12]appliedtheire
based RSM to an internal cooling channel heat transfer and

achieved good results. The RSM model used in that work was

reflection free and was applied all the way to the wall, although

the distance to the wall was used in a damping function.

The present Stress-03 model is also valid all the way to the
wall[ 1 ]. It does not use reflection terms and there is no need for

wall functions or the use of a two layer model which have
limited validity. This feature would make the model useful in

heat transfer calculations. The model was implemented in our

code Glenn-HT (NASA Glenn Heat Transfer Code) and solved
using the code's explicit scheme.

NOMENCLATURE
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constant pressure specific heat

hydraulic Diameter

heat transfer coefficient

Kinetic energy of turbulence
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Reynolds number

static temperature/T O

dimensionless distance from a wall, = y_

Turbulence dissipation rate
specific heat ratio

Reynolds stress

Specific dissipation rate of turbulence

_/Xw/ P
V

Subscripts

t total conditions

w wall value

FORMULATION

Stress-Omega Model

As described in the introduction the Stress-03 Reynolds Stress
model of Wilcox was adopted for the present work. The

equations for the Reynolds stresses "Cij=-Puiu---_ are given below:

OT, ij OT, ij

0--7+ Uk b-_Xk (1)

bUj OU i b F _T'ij

= -- "Cik _ -- "Cjk _ - PEij- I-[ij + + PCijk]

where the terms underlined on the right hand side are modeled.

The Stress-03 model uses the 'standard' modeling practice for

the underlined terms except for the last tenn.

From the Kolmogorov hypothesis of local isotropy.

2
eij = 5eSij (2)

Using the definition of e = 130r.ok allowing for 'isotropic

damping' near walls,

2 *

eij = 513o°kSij (3)

The term Flij is the pressure-strain Correlation of Launder-

Reece and Rodi(1975)[ 16] written as:

Hij = fJ,ClO(,r, ij + _PkSij)_<(pi j 2p-5 80)

-ffoo(Dij-_P_ij) _oopk(Sij-_Skk_ij )

(4)

where

OU i

Pij = T'im__m" + T'jm_x m ,

OU m OU m

Dij = T,im-_x j + T, jr n _X i

and

1
P = _Pk_ (5)

also

r a'17 i .1
/_, B J/

Cijk = L rg;£j (6)

For calculation of 03 the standard equation is used [1 ]:

_f.O _5= _U i O I _tT)_kXk] (7)p__ + p Ujff_xj otpco/k.ciJ__x k _ _p(.o2 + _ (g + Do)

above

v r = ot*k and Re r = k (8)
CO O,)V

The closure coefficients are given as

_, __ _0" + ReT/Rk
1 + ReT/R k (9)

13 (x0 + ReT/Ro

25" 1 +ReT/R o "

3+ReT/R o

3Ot*O+ReT/Rko
(10)

13 = 0.09-
4/15 + ReT/Rf3

1 + (ReT/RB) " ff3* (11)
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1. + &ooReT/R k

1 + ReT/R k
(12)

ReT/R k

"0 '1+ee /e (13)

+ ReT/R k

1 + ReT/R k
(14)

9 5/3 + ReT/R k

C1 = 5" I + ReT/R k
(15)

where the constants with the _o subscript are the constants of

the original LRR model for the pressure-strain correlation

model given as follows:

&_ = (8 + C2)/11 , _ = (8C2-2)/11 and

p--_+pUjG = cza* -159o)2+ (_+_tT) (19)

The isotropic eddy viscosity is given by

Finally, in the original model the coefficients appearing in the

model are the following:

G = 0.5 , 13 = 3, 13*=0.09fig (20)

5/18 + (ReT/RIg) 4
fig=

1 + (ReT/RIg)4
(21)

0¢0 + (ReT/Ro))

¢/= = (60C 2 -4)/55 f(_ = 1 + (ReT/Rco) (22)

9 1 13

' - 25

1

*0 = _130 , _0 = 0.105 , Y0 = 0.007 (16)

R k = RIg = 12 and Rco = 6.20 ,

Further definitions follow:

fig, = 1, if ;_k < O and

K-comodel

1 + 640)C2 k

fig* = i + 400Z2 k' if )_k > 0
(17)

1 3k3o)

O) 3 0xjOxj

where

13"0 = 0.09

The k-co turbulence model of Wilcox [ 1] is used to model the

effects of the small scales of turbulence on the larger scales of

the mean flow. The version of the model used here incorporates

some improvements suggested by Menter (1993)[ 17]. Using the

original formulation of Wilcox, the model equations can be

written as follows"

P_ + P JG = "Tf22-PI3*O)k + (g + C"T)
(18)

ct0 + (ReT/R K)

f _t = 1 + (ReT/RK) (23)

in the above

_x0 = 1, a*0---0.025, R k = 6, Ro = 2.7

Following the suggestions of Menter [17], the production terms

are modified and written in terms of vorticity magnitude D_, This

reduces the overshoots of heat transfer rates in the vicinity of

stagnation points.

Turbulent Heat Flux

Both models integrates to the walls and no wall functions are

used. A value for Prandtl number (Pr) equal to 0.72 is used.

Viscosity is a function of temperature through a 0.7 power law

[18]and Cp is taken to be a constant.

When using the 2-equation model for the calculation of

turbulent thermal fluxes, eddy viscosity model and a constant

value of 0.9 for turbulent Prandtl number, Pr t was used. For the

Reynolds stress model the turbulent heat fluxes were calculated

using the Generalized Gradient Diffusion Hypothesis (GGDH)

given in for example Iacovides et. al. [3] among other places.

---= ----k 3§ (24)
--uio'_uiu .-

JEOXj

For our purposes we will rewrite the above in the following
form

_ uiujk 2 _'0

--u iO' -k "E _x j
(25)

rewriting using k and co, we found the following form
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satisfactory for flow over flat plates.

UiUj _0

--UiO'= 3"3VT k Oxj
(26)

The ratio of k
--- can be regarded as an anisotropic turbulent
UiU j

Prandtl number relating an anisotropic thermal diffusivity to an
isotropic momentum diffusivity.

Using the eddy viscosity hypothesis with a constant Prandtl

number in Stress-co model as is done for the k-co model

produced heat transfer results that were too low. This was found

to be due to the fact that the Stress-co model produces lower
levels of k than does the k-co model.

CHANNEL GEOMETRY AND FLOW CONDITIONS

The test problem was taken from the experiment of Arts et

al.[6] It is an aggressive 180 degree turn channel with a

rectangular cross section. The inlet and exit channels have the

same cross section as shown in Fig. 1. The overall length of the
channel is 8W. The divider has a thickness of W/5 and extends

to within one width of the end wall. The divider has a semi-

circular end. The experiments were performed for two channels
with aspect ratios (H/W) of 1. and 0.5, the latter of which is

considered here. The condition of symmetry has been used so

that only half of the channel has been gridded. In the

experimental work two Reynolds Numbers were considered,

namely 17,000 and 35,000. For the present numerical work the
channel Reynolds number of 17000 was simulated.

COMPUTATIONAL METHOD

Computational Scheme

The simulations in this study were performed using a multi-
block computer code called Glenn-HT [2]. This code is a

general purpose flow solver designed for simulations of flows in

complicated geometries. The code solves the full compressible,

Reynolds-averaged Navier-Stokes equations using a multi-stage
Runge-Kutta-based multigrid method. It uses the finite volume

method to discrefize the equations. The code uses central

differencing together with artificial dissipation to discrefize the

convective terms. The overall accuracy of the code is second

order. To achieve good convergence the turbulence co equation
and the Reynolds stresses were implicitly coupled in a

pointwise fashion in the Runge-Kutta stage calculations.

Boundary Conditions

Boundary condition treatment is dealt with in [2]. Here we
will not repeat the treatment of standard flow variables but

extend the discussion to include specification of Reynolds
stresses. The boundaries are treated as follows.

Inlet: At the inlet, the incoming profiles of k and co need to be

specified. Typically, the details of the profiles are unknown so

Figure 1.Sketch of the geometry

reasonable assumptions need to be madd. Approximate values of

k and co can be computed based on turbulence intensity and some

measure of a length scale. In cases such as the present where the

flow is sensitive to the exact values of k and co at the inlet, the

profiles need to be specified more carefully.

In the present problem the channel is extended upstream of

where the inlet boundary condition is specified and heating
begins. For that reason an inlet profile corresponding to a fully
developed channel flow is assumed. For the k-co model this

specification is done algebraically [2]. For the case where the

detailed boundary conditions on the Reynolds stresses are

necessary the approach taken was to solve the fully developed

channel flow and transfer the resulting profile to the inlet of the

180 degree channel. The problem was solved on a grid identical
to the grid used at the inlet but extended in the axial direction. The

channel was not very long so in order to achieve fully developed
flow, compressible flow periodicity in axial direction was
enforced.

Exit: The static pressure is specified at the exit and other

variables are extrapolated.

Symmetry: Symmetry boundary conditions are trivial for all the

variables except the Reynolds stresses some of which vanish and

others have a vanishing normal derivative to the symmetry plane.

Walls: At solid walls the specific dissipation rate, co, can be
specified as follows:

00= SR_-_(U)lwall (27)

where

S R =

5o 2
KR ) if K R < 25

100

"_R if KR > 25

(28)

and K R is equivalent sand-grain roughness height in turbulent
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:Figure: 2.(a) Grid Topology (b) Coarse Grid,(c)Medium Grid and

(d)Fine Grid a:a.d (e) distribution., of' y+ :for _d '(d)'

Figure 3,VeI.ocity vectors (a) Downstream ofthe turnand (b) near

the bottom wall and (c) Streamline tracing the major vortices in.
the flow.

wall unitS, _pically, .KR=5 is Chosen, .corresponding to a

.hydraulical!y smoothsurface.,

The wall temperature is specified as a constant va!ue for heat

transfer surfaces., The .ReynOlds. stresses andthe-turbulent
Thermal fluxes are. _ro at the-wails,

:GEOMETRY MODELING AND GRID SYSTEM

Figure 1 shows a typical grid topoIogy :.and. the ._.id
constructed for this problem, It covers halfof the channel anda

symmetric boundau¢ condition is used, "The muttibtock :.grid

generated using a commerciaI.package called GridPro, consis_

approximately ,34E6, .52E6 and. 1,06E6 cells for the.coarse;

medium :and the. fine ._.d, Grid spacing adjacent to the walls

produce averaged dimensionless .spacing: (y+):near unity (Fig,

2(e) co_esponding: to grid "(d)') with a: stretching :ratio of.grid
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measurementsof Arts et ai. [I:6] and correspondsto an _spect
ratio of O.5 and Reynolds number of t 8(D0. The contours are
Nasselt number ratio NU/Nu0,: where

Nu = hD__
k (29)

tn this equation D is the hydraulic diameter and k is the

thermal conductivity evaluated at thereference temperature

T_,_fdeftned as the a fi:thmetic average of the inlet and exit

centefline temperatures, The heat transfer coefficient h is

defined by the following expression:

ql.'_:

h = (30)
T_,- Tref

N% is _e Nusselt number for a fully deve!o_d channel

flow defin_ as:

-_-....._-:-_._:.......IIIII.?Z""".............----:-__--_--_-:-::::"....,_-." ....---::_........:......:........._..............._: '-- '----_;_

, • . • • (el ___----_-jy/

Figure 4.Nu/Nu0 for the case of channel flow with AR_.5 and

N% = O.023Reo°'Spr°'4 (3:1) R.ed=17fD0. (a) Experimental measurement of Arts et aI[16]. (b)

calculation using k-t_ model and (e), (d)and (e) calculation using Stress-

Figure 4b shows the calculated heat transfer rate: using the m model with the 340,000, 523,000 and 1.06E6 celts,

k-0_ model. Tlais was accomplished using the c_rse _d.

NASA/CRy2002-211515 6



Theresultsaresimilartothoseobtainedwitha yetcoarsergrid
(--100,000cells)in [2]andthusit isensuredthatfurtherrefinement
wouldnotchangethecharacterof thesolutionsubstantially.The
resultshavetwomajordifferenceswiththedata.Firsttherisein
therateofheattransferneartheendwall(thewallfacingtheinlet)
is notmatchedby theexperimentandsecondlytherisein heat
transferneartheinnerwallofthereturnlegisnotcapturedbythe
k-comodel.

Figure4(c)showsthesamecasesolvedusingtheStress-co
modelandthecoarsegridof340,000cellswhileFig.4(d)isforthe
mediumgridof523,000cells.Ascanbeseentherearesubstantial
differencesbetweenthetwosolutions.Thissuggestedthatfurther
refinementwasstill necessary.A finergridof 1.06E6cellswas
considered.ThesolutionsusingRSMhavesimilarcharacteristics.
Namelyarisein heattransferneartheendwallaswiththek-co
model,notsupportedbytheexperimentandthetwootherregions
ofhighheattransferonthereturnleg.Thehighheattransferregion
onthereturnlegadjacenttothepartitioniscapturedbytheRSM.
Therisein heattransferonthereturnlegneartheouterwallis
presentfortheStress-comodelasforthek-comodelinagreement
withtheexperimentaldata.

It isobservedthereforethattheReynoldsStressmodelutilized
canhelpcapturetheflowphysicsandbyextensiontherateofheat
transferbetterthanthetwo-equationmodelversion.A muchfiner
gridisrequiredinorderto obtainasatisfactorysolutionwiththe
RSM.Inthepresentcasethecoarsestgridtocapturethephysicsof
theflowwiththeRSMwas3timesfinerthanthegridusedforthe
k-comodelin [2]. Theexpenditurehoweverappearsto be
worthwhileif agreaterresolutionoftheheattransferdistributionis
desired.In the presentcasehoweverthe agreementwith
measurementsin theU-turnareasuggeststhatthepresentmodelis
still notquiteableto predicttheturbulencelevelswherethere
existsflowaccelerationandimpingement.It shouldbenotedthat
thepresentproblemowingto thesevereturnin theflowand
presenceof severethree-dimensionalityandstrongsecondary
flowsisadifficulttestforanyturbulencemodel.

SUMMARY AND CONCLUSIONS

The Low Reynolds number versions of Stress-co model and the

two equation k-co model of Wilcox were used for the calculation of

turbulent heat transfer in a 180 degree turn simulating an internal
coolant passage. The RSM was implemented within a Finite

Volume code (Glenn-HT) and solved using the existing explicit

scheme. For the present problem care was taken to specify

reasonable inlet boundary conditions for all the variables,

especially those for the Reynolds stresses by first solving a fully
developed flow in a channel.

A rather systematic grid study was implemented. The results

showed that using the Reynolds Stress model allowed better

prediction of heat transfer compared to the k-co two equation
model. This improvement however required specification of a finer
grid and a larger CPU time.
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